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Enteric Escherichia coli (E. coli) are both natural flora of humans
and important pathogens causing significant morbidity and
mortality worldwide. Traditionally enteric E. coli have been
divided into 6 pathotypes, with further pathotypes often
proposed. In this review we suggest expansion of the enteric
E. coli into 8 pathotypes to include the emerging pathotypes
of adherent invasive E. coli (AIEC) and Shiga-toxin producing
enteroaggregative E. coli (STEAEC). The molecular mechanisms
that allow enteric E. coli to colonize and cause disease in the
human host are examined and for two of the pathotypes that
express a type 3 secretion system (T3SS) we discuss the
complex interplay between translocated effectors and
manipulation of host cell signaling pathways that occurs
during infection.

Since its identification in 1885, Escherichia coli has become one of
the most comprehensively studied bacterial species. E. coli strains
are comparatively easy to grow and manipulate in the laboratory,
are amenable to genetic manipulation, and naturally acquire
mobile genetic elements. While E. coli isolates form part of the
beneficial normal flora of the intestine, some strains have evolved
pathogenic mechanisms to cause disease in humans and animals.
E. coli strains can cause enteric/diarrhogenic or extraintestinal
(ExPEC) infections in humans. ExPEC infections are primarily
urinary tract (caused by uropathogenic E. coli, UPEC) and sepsis/
meningitis (caused by neonatal meningitis E. coli, NMEC). Only
the enteric E. coli will be covered in this review.

Enteric E. coli infections are traditionally divided into 6
pathotypes based on their pathogenicity profiles (virulence factors,
clinical disease and phylogenetic profile): Enteropathogenic E. coli
(EPEC), Enterohamerrhagic E. coli (EHEC), Enteroinvasive E.
coli (EIEC, including Shigella sp), Enteroaggregative E. coli
(EAEC), Enterotoxigenic E. coli (ETEC) and Diffusely Adherent
E. coli (DAEC).1,2 Characteristic features of these pathotypes are
shown in Table 1. Two further pathotypes have recently emerged;
Adherent Invasive E. coli (AIEC) which is thought to be associated
with Crohn disease but does not cause diarrhogenic infection3

and the Shiga Toxin (Stx) producing Enteroaggregative E. coli
(STEAEC) responsible for the 2011 Germany E. coli outbreak.
E. coli strains can also be categorized by their serogroup, e.g.,

E. coli O157 where O refers to the LPS O-antigen or serotype
e.g., E. coli O157:H7 where H refers to the flagellar antigen.
However, as each pathotype contains many serotypes (117 ETEC
serotypes have been identified4) and some serotypes can belong to
more than one pathotype (e.g., O26:H11 can be either EPEC or
EHEC), serotyping strains may not provide definitive identifica-
tion of pathotypes.

Epidemiology

Enteric E. coli are part of the natural flora of many animals.
Human infections occur through consumption of contaminated
food products (undercooked meat, or contaminated fresh produce
such as salad leaves), drinking water contaminated with animal or
human waste, or through direct person-to-person spread from
poor hygiene.5 Accurate figures of the incidence of enteric E. coli
infections worldwide are difficult to determine, as the causative
agents of diarrhogenic infections are often not identified. In the
developing world ETEC, EPEC and EAEC appear to be major
causes of infantile diarrhea with potentially fatal consequences
when untreated, while in the developed world these infections are
mild and self-limiting. EHEC and more recently EAEC and
STEAEC are the main E. coli pathotypes associated with food
poisoning outbreaks in the developed world.

ETEC is reported to be the most commonly isolated bacterial
enteropathogen in children under 5 y of age in developing
countries, accounting for approximately 20% of cases, equivalent
to several hundred million cases of diarrhea and several tens of
thousands of deaths each year.6 ETEC is also the most common
cause of travelers’ diarrhea accounting for 10–60% of infections
depending on the region visited.7,8 Extrapolation of these figures
suggests there may be 10 million cases of travelers’ diarrhea caused
by ETEC per year.9 ETEC also causes disease in animals
including cattle and neonatal and post-weaning pigs10 with host
specificity occurring through acquisition of colonization factors
(CF) rather than emergence of animal specific lineages.

EAEC is the second most common cause of travelers’ diarrhea
after ETEC11 and its prevalence in endemic and epidemic disease
is becoming well recognized. It causes persistent diarrhea in
children in developing countries12,13 and has been implicated as an
important enteric pathogen affecting AIDS patients.14 No animal
reservoir has been described for EAEC suggesting that it is
persisting in the human population. The 2011 German E. coli
foodborne outbreak was caused by an EAEC strain (O104:H4)
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that had acquired typical EHEC phenotypes, most notably Stx
production. Infection with STEAEC O104:H4 resulted in a high
percentage of patients developing hemolytic uremic syndrome
(HUS) and a mortality rate of 1%;15 852 cases of HUS, resulting
in 32 deaths and 3469 cases of non-HUS STEAEC, resulting in
18 deaths.16 Taking into account this large outbreak and the
previous outbreaks of Stx2-positive O104:H4,17,18 STEAEC
could now be considered an emerging pathotype of enteric E.
coli. Confirmation of STEAEC as an emerging pathotype will
require continued detection of this distinct population of hybrid
EAEC/EHEC strains.

The importance of DAEC to enteric disease remains uncertain.
Some studies suggest DAEC may be an important contributor to
diarrhogenic disease in children, however problems of cross-
reactivity of one of the standard detection probes raises questions

about this.19 A correlation with disease may occur in specific age
demographics (children aged 18 mo–5 y20 or 13–24 mo21)
although further epidemiological studies are required if DAEC is
to remain a distinct enteric E. coli pathotype.

It is still under debate whether the association of AIEC with
Crohn disease (CD) is causative or symptomatic. A combination
of the two is likely with a genetic predisposition to developing CD
exacerbated by microbial infection (including AIEC) into active
CD. AIEC strains have been found associated with CD lesions in
ileal and neo-terminal ileal and colonic specimens.22 An increased
immune response to E. coli in CD patients also suggests an
involvement of E. coli in the pathology of CD.23

In the developed world epidemiological data for enteric E. coli
infections is generally collected based on toxin production rather
than pathotypes or serotypes and infections are therefore

Table 1. Summary of enteric E. coli pathotypes

Pathotype Adhesin Toxin T3SS SPATE Disease

ETEC Colonization factors (CF)
Porcine A/E associated

adhesin (Paa)

Heat-labile enterotoxin (LT)
Heat-stable enterotoxin (ST)

Cytolysin A (ClyA)

- ETEC autotransporter A (EatA) Acute watery diarrhea
(, 5yo)

Travelers’ diarrhea

EAEC Aggregative adherence
fimbriae (AAF) (I, II, III, Hda)

Toxigenic invasion loci A (Tia)

EAEC heat-stable enterotoxin 1
(EAST1)

Shigella enterotoxin (ShET)1
Hemolysin E (HlyE)

+/2* Plasmid-encoded toxin (Pet)
Protein involved in intestinal

colonization (Pic)
Secreted autotransporter toxin

(Sat)
Shigella IgA-like protease

homology (SigA)
E. coli secreted protein (Esp)P

Travelers’ diarrhea
Infant diarrhea

STEAEC AAF
IrgA homolog adhesin (Iha)

Shiga toxin (Stx) - Pic
Pet

Food poisoning

DAEC afimbrial (Afa) or fimbrial (Dr)
adhesins

- - Sat Acute diarrhea (, 5yo)

AIEC Type 1 pili
Long polar fimbriae (LPF)

- - - Crohn disease

EHEC Intimin
Paa

Toxin B (ToxB)
E. coli factor for adherence

(Efa)-1
LPF

STEC autoagglutinating adhesin
(Saa)

E. coli immunoglobulin-binding
protein (EibG)

EHEC autotransporter encoding
gene A (EhaA)

Outer membrane protein A
(OmpA)
Iha

Stx LEE encoded EspP Food poisoning

EPEC Intimin
Bundle forming pili (BFP)

Paa
LPF
Iha
EhaA

- LEE encoded EspC Infant diarrhea

EIEC
(Shigella)

- ShET1/2 pINV encoded Shigella extracellular
protein (Sep)A

SigA

Shigellosis

*One potentially functional but as yet uncharacterized T3SS (ETT2) was found in the genome sequence of EAEC O42 (and remnants of a second).
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commonly referred to as Stx-producing E. coli (STEC) or
Verotoxigenic E. coli (VTEC). These classifications can include
all of a pathotype (all EHEC strains are STECs) or part of a
pathotype (STEAEC strains are also STECs) and may be further
categorized as STEC/VTEC O157 referring to the most prevalent
EHEC serogroup. 2011 estimates from the United States suggest
9.4 million foodborne illnesses occur annually, resulting in
55,961 hospitalizations and 1,351 deaths.24 While STEC O157
infections accounted for only 4% of laboratory confirmed
foodborne infections in the US from 1996–2005, STEC O157
had the highest case fatality rate across the population and the
highest annual population mortality rate in children 0–4 y.25 Data
from the European Union for 2009 suggests 1% of laboratory
confirmed zoonotic infections were attributable to VTEC with
7% of those developing HUS.26 Therefore while incidence rates of
STEC/VTEC are relatively low compared with Campylobacter
and Salmonella infection rates, the severity of the disease and high
case fatality rates means these infections are of major health
concern.

While EPEC was the first strain of E. coli generally accepted to
cause diarrhogenic outbreaks in the developed world,27,28 its
incidence has declined and EPEC outbreaks are now rare in
developed countries. However it does remain an important cause
of infant diarrhea in the developing world with recent estimates of
EPEC prevalence among children with diarrhea ranging from 6–
54%, although high carriage rates among healthy controls makes
the contribution of EPEC to disease difficult to assess.29 Atypical
EPEC [i.e., those lacking the EAF plasmid that encodes bundle-
forming pili (BFP)] appear to have a propensity to cause persistent
diarrhea.30,31

EIEC and Shigella can be distinguished by minor biochemical
tests but in general have the same virulence mechanisms and
disease symptoms. Strains of EIEC and Shigella appear to have
evolved independently to share many characteristics,32 and EIEC
strains seen today may simply be intermediates between E. coli
and Shigella. We therefore direct the reader to the excellent review
on Shigella species contained in this issue for in depth analysis of
this pathotype.

Molecular Mechanisms of Virulence

Three pathotypes of E. coli (EHEC, EPEC and EIEC) employ a
T3SS to translocate bacterial proteins, known as effectors, directly
into the eukaryotic host cell in order to subvert host cell processes.
For these pathotypes the T3SS is a major, but not the only,
contributor to virulence. For convenience the pathotypes have
been divided into non-T3SS dependent pathotypes (ETEC,
EAEC, STEAEC, DAEC and AIEC) and T3SS dependent
pathotypes (EHEC, EPEC and EIEC). The non-T3SS dependent
pathotypes of enteric E. coli have comparatively simple and
efficient molecular mechanisms of virulence requiring effective
colonization factors followed by secretion of toxins that sub-
sequently enter the host cell (for ETEC, EAEC and STEAEC).

Non-T3SS dependent pathotypes. ETEC. At least 25 distinct
proteinaceous colonization factors (CFs) have been identified in
ETEC strains33 which mediate adhesion to epithelial cells (Fig. 1).

Although 30–50% of ETEC isolates have no characterized CF by
phenotypic screening,6 novel CFs are constantly being identified
genetically thus reducing the number of isolates with no apparent
CF.34 Two further proteins, the outer membrane protein Tia and
the glycosylated autotransporter TibA, have been reported to
mediate intimate cell attachment and to induce ETEC invasion
into epithelial cells, for the prototype ETEC strain H10407.35

While ETEC binds to leaf surfaces through the flagellum shaft,36 a
novel adhesin, EtpA, located on the tip of ETEC flagella mediates
attachment to mammalian host cells.37 EtpA is degraded by the
serine protease autotransporter of Enterobacteriaceae (SPATE),
EatA, thereby modulating bacterial adhesion and accelerating
delivery of heat labile (LT) toxin into host cells.38 A model of
sequential attachment is proposed whereby the long-range
flagella-EtpA first anchors the bacterium to the host cell and
allows shorter CFs to interact. EatA then degrades EtpA and
finally intimate attachment is mediated by Tia and TibB.

The main pathology of ETEC occurs through secretion of heat
stable (ST) and/or heat labile (LT) toxins. Two small (2,000 Da)
distinct heat-stable toxins, STa/STI and STb/STII, exist although
only the former is thought to contribute to human disease. STa/
STI mimics the native intestinal hormone guanylin, binding to
and activating the intestinal brush border guanylate-cyclase-C
(GC-C) receptor, increasing intracellular messenger cyclic GMP
(cGMP). This activates cGMP-dependent protein kinase II
leading to phosphorylation of the cystic fibrosis transmembrane
regulator (CFTR) and deregulated ion absorption/secretion and
hence diarrhea.39-41

The LT toxins can be divided into Type I (LT-I), generally in
human isolates and closely related to cholera toxin, and Type II
(LT-II), which are mainly from non-human isolates.6 LT toxins
are AB5 toxins (one A subunit linked to a pentameric B subunit)
and are transported across the bacterial outer membrane by the
type 2 secretion system.42 LT remains membrane-associated by
binding lipopolysaccharide (LPS)43 and is secreted in outer
membrane vesicles (OMVs) that bind to ganglioside receptors on
the mammalian cell (GM1a for LT-I or GD1a/b for LT-II) via the
LT-B subunit. The OMVs are then actively endocytosed and the
LT transported via the Golgi and endoplasmic reticulum (ER) to
the cytosol44 where the A1 subunit then ADP-ribosylates
mammalian guanine nucleotide binding protein a-subunit
(Gsa). This inhibits the GTPase activity of Gsa and constitutively
activates adenylate cyclase leading to uncontrolled elevation of the
intracellular cAMP concentration.45 This has pleotropic effects
within the cell including phosphorylation of the CFTR chloride
channel by protein kinase A. The combination of LT and CT
ultimately leads to secretion of electrolytes and water resulting in
osmotic diarrhea.

Several other putative toxins have been described for ETEC
including the pore-forming cytotoxin ClyA,46 however details of
their mechanism of action, frequency among isolates, and
importance during infection is unclear.

EAEC. EAEC strains are defined by their aggregative adher-
ence or “stacked brick” phenotype on HEp-2 cells while in the
intestinal mucosa EAEC forms a biofilm with bacteria incased in
a thick mucus layer. Colonization requires the AAF (Fig. 2) and
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the regulator AggR both encoded on a large virulence plasmid
pAA. AAF, of which four variants have been described, mediates
attachment of EAEC to salad leaves (in combination with
flagella),47 host cells48 and human intestine ex vivo49 but were not
shown to confer a colonization advantage in a mouse model.50

Other than AAF and AggR, there is a great deal of genomic
diversity among EAEC strains with corresponding heterogeneity
in virulence and few conserved virulence factors. Further coloni-
zation factors found in some EAEC isolates include Heat-resistant
agglutinin (Hra) 1 and 2 and Tia (also found in ETEC).51 The
secreted small hydrophilic protein dispersin (encoded by aap) aids
colonization by attaching noncovalently to the bacterial cell surface
potentially neutralizing the negative charge of the LPS and allowing
the positively charged AAF to extend away from the cell.52

EAEC strains produce a variety of SPATEs of either class I
(cytotoxic) or class II (non-cytotoxic). Pic (protease involved in
colonization, also found in Shigella flexneri and UPEC) is a class II
SPATE with hemagglutinin and mucinolytic activity which may
help to penetrate the mucus layer in which EAEC resides on
enterocytes.53 Conversely, Pic can induce mucus hypersecretion
and an increase in the number of mucus-producing goblet cells.54

Pic has also been implicated in immunomodulation by cleaving
leukocyte surface glycoproteins and inducing both activation and
apoptosis in T cells, but impaired migration, of polymorpho-
nuclear leukocytes (PMNs).55 Pet is a well characterized class I
SPATE that is endocytosed by host cells, undergoes retrograde
trafficking and utilizes the ER-associated degradation (ERAD)
pathway to be released into the cytosol. Pet then cleaves the actin
binding protein spectrin in the host cytosol, disrupting the actin
cytoskeleton and causing cell rounding and detachment.56 Recent
evidence has also suggested a role for Pet in disrupting focal
adhesions.57 Pet is only present in a small minority of strains58 and
alternative class I SPATES (Sat, SigA, EspP) may have similar
roles. Sat in particular has 52% amino acid identity with Pet and
is discussed further under DAEC.

Non-SPATE toxins include the EAEC heat-stable enterotoxin
1 (EAST-1), which is encoded on pAA and is 50% identical to,
but antigenetically distinct from, the enterotoxic domain of STa.
Like STa, EAST-1 activates guanylate cyclase leading to increased
cGMP, although the toxigenic effect appears milder than for
STa.59 The prevalence of EAST-1 among EAEC strains and its
contribution to virulence remains unclear.60,61 Further toxins

Figure 1. Enterotoxigenic E. coli (ETEC). EtpA located on the tip of flagella attaches to host cells but is then degraded by the SPATE EatA. Adherence is
maintained by colonization factors (CF) and intimate attachment achieved with Tia and the autotransporter TibB. Heat stable toxin (ST) is secreted by
ETEC and binds to guanylate cyclase-C receptor increasing cGMP and cGMP-dependent protein kinase II. Heat labile toxin (LT) is contained in outer
membrane vesicles, which are endocytosed after interaction with ganglioside receptors (GM1). Retrograde transport through the Golgi and ER leads to
the A1 subunit being released in the cytosol where it can ADP ribosylate mammalian guanine nucleotide binding protein a-subunit (Gsa) inhibiting the
GTPase activity of Gsa and activating adenylate cyclase resulting in uncontrolled cAMP levels. cAMP and cGMP both contribute to phosphorylation of the
cystic fibrosis transmembrane regulator (CFTR) chloride channel and modulation of other ion channels leading to osmotic diarrhea.
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include ShET1 (characterized as an AB5 toxin in Shigella
flexneri)62 and HlyE (a pore-forming toxin)63 have also been
proposed to contribute to EAEC virulence.

Recent sequencing of the prototype EAEC strain 042 has
revealed some interesting potential virulence factors including two
T3SS and potential effector proteins as well as a locus encoding a
polysaccharide capsule, but these remain to be tested and their
frequency among clinical isolates determined.64 EAEC 042 also
encodes three type 6 secretion systems and, like many EAEC
clinical isolates, has multiple antibiotic resistance genes,65 making
treatment and eradication difficult.

STEAEC. The chromosome of STEAEC 2011 outbreak strain
O104:H4 is most similar to EAEC strain 55989.15,66 This
STEAEC outbreak strain carries Pic on the chromosome and a
pAA-like virulence plasmid encoding AAF, AggR, Pet, ShET1 and
dispersin (Fig. 3). A second virulence plasmid encodes multiple
antibiotic resistances. In addition to these standard EAEC
virulence determinants STEAEC O104:H4 has an stx2-
harbouring prophage integrated into the wrbA locus, and
therefore can produce Stx, a defining characteristic of the
EHEC pathotype (discussed under EPEC/EHEC—Non T3SS
virulence mechanisms—Toxins). The outbreak strain has also

acquired the IrgA homolog adhesin (Iha)67 and a tellurite resist-
ance cluster, which are common features of EHEC strains.68

Therefore, there do not appear to be new virulence determinants
in this strain, rather a combination of known virulence
determinants from two pathotypes. The high morbidity and
mortality associated with this strain may reflect the stronger
adherence of EAEC compared with EHEC allowing more Stx to
be transferred and more resultant pathology.

DAEC. Grouping of DAEC strains is due to their diffusely
adherent phenotype on HEp2 cells, which for most strains is
due to the action of afimbrial (Afa) or fimbrial (Dr) adhesins
(Afa-Dr adhesins) (Fig. 4). All Afa/Dr adhesins bind the
decay-accelerating factor (DAF), while a subfamily of Afa/Dr
adhesins (AfaE-III, Dr and F1845 adhesins) can also bind
carcinoembryonic antigen-related molecules (CEACAMs)69,70 and
the Dr adhesin can also bind type IV collagen.71 A small number
of DAEC strains may also express the CS20 colonization factor
from ETEC.72

Once the Afa/Dr adhesins bind their cellular target on
enterocytes (DAF or CEACAMs) they relocalize the target
around the site of bacterial attachment. For the Dr adhesin this
relocalization has been shown to be dependent on Src kinase

Figure 2. Enteroaggregative E. coli (EAEC). EAEC attach to host cells and each other by Aggregative Adherence Fimbriae (AAF) that are kept extended
from the bacterial cell by dispersin. Adhesins Tia and Hra1/2 also contribute to intimate attachment. SPATEs include Pic, which digests mucin on host
cells, and Pet which is endocytosed, undergoes retrograde trafficking and cleaves spectrin disrupting the actin cytoskeleton and inducing cell rounding
and detachment. EAST-1 binds to and activates GC-C resulting in increased cGMP.
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Figure 3. For figure legend, see page 77.
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activation.73 Following target mobilization, enterocyte signaling
pathways (e.g., MAPK and PI3K) are activated and IL-8 is
synthesized (for the F1845 adhesin this requires HIF-1a74)
inducing transepithelial migration of human polymorphonuclear
neutrophils (PMN). This stimulates the enterocytes to synthesize
TNFa and IL-1β and upregulate DAF to strengthen bacterial
adhesion.75 DAEC can interact with the transmigrating PMNs
and induce type I pili-dependent IL-8 release.76 Transmigrated
PMNs are also induced to undergo apoptosis after interaction
with DAEC and have a diminished phagocytic capacity,
prolonging bacterial persistence in the gut.77

The only documented secreted factor associated with DAEC
infection is the SPATE Sat. Sat can induce rearrangement of the
tight junction proteins ZO-1, ZO-3 and occludin increasing
paracellular permeability but not transepithelial resistance78 and
can also bind spectrin,79 rearrange focal adhesion associated

proteins vinculin and paxillin, and cause cell detachment and
caspase-independent cell death.80

AIEC. While AIEC strains are genetically related to ExPEC
strains they appear to have acquired novel virulence-specific
features which can be characterized phenotypically (adhesion,
invasion and intramacrophage replication) but the genetic basis
of which is still largely undetermined.81 This has hampered
identification and hence research into the prevalence and
importance of AIEC. The majority of AIEC research has used a
single strain, LF82, and extrapolation of these results to other
AIEC strains is vital as the field progresses.

AIEC infection requires both a susceptible host as well as
bacterial virulence determinants. The first step in AIEC infection
is abnormal colonization of the intestinal epithelium via type I pili
binding to the CEACAM6 receptor, which is overexpressed in the
ileal mucosa of CD patients.82,83 In addition to type I pili, long

Figure 3. (See opposite page). Shiga Toxin producing Enteroaggregative E. coli (STEAEC). (A) STEAEC attach to each other and to enterocytes by AAF
and dispersin, as for EAEC. STEAEC also encodes the Iha adhesin and SPATES Pet and Pic, although their contribution to infection is unknown. The action
of shiga toxin (Stx) on an endothelial, toxin sensitive cell is shown in (B). The B subunit of Stx interacts with Gb3 on the host cell and Stx is endocytosed
and undergoes retrograde trafficking through the Golgi and ER, the A subunit then cleaves an adenine residue from the 28S rRNA of eukaryotic
ribosomes inhibiting protein synthesis and leading to cell death. Stx can also cause cells to undergo a ribotoxic stress response, which leads to release of
IL-8, or to undergo ER-dependent apoptosis.

Figure 4. Diffusely Adherent E. coli (DAEC). AFA/Dr adhesins interact with the decay-accelerating factor (DAF) on host cells. Src kinase activation mobilizes
DAF around the attachment site mediating stronger attachment and MAPK and PI3K pathway activation culminating in IL-8 synthesis, which induces
transmigration of PMNs. PMN transmigration stimulates upregulation of DAF and TNFa and Il-1b synthesis. DAEC Type 1 pili induces IL-8 release from
PMNs and apoptosis. Sat induces rearrangement of the tight junction proteins ZO-1, ZO-2 and occludin leading to paracellular permeability.
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polar fimbriae were recently shown to also be required for AIEC
to bind to M cells in Peyers patches.84 This suggests that AIEC
may utilize the transcytic characteristics of M cells to cross the
intestinal barrier, as is the case for many other intestinal pathogens
(e.g., Yersinia sp).

AIEC secrete OMVs that appear to be required for AIEC to
invade intestinal epithelial cells (IECs),85 potentially by delivering
effector proteins into the host cell. The OMVs contain OmpA
which interacts with the ER-localized stress response protein
Gp96 which has been shown to be overexpressed on the apical
surface of ileal epithelial cells in Crohn disease patients.86 Other
than OmpF/C and OmpA the composition of these OMVs and
potential effector proteins delivered by this mechanism are
unknown. While AIEC invasion into epithelial cells requires
actin and microtubule involvement87 the molecular mechanisms
remain unknown. AIEC can survive and replicate in phagoly-
somes of infected macrophages in the lamina propria, resulting in
increased TNFa secretion88 which may lead to the inflammation
associated with Crohn disease.

T3SS-dependent pathotypes. Of the T3SS-dependent patho-
types EHEC and EPEC primarily remain extracellular during
infection while EIEC are found intracellular. Despite these very
different lifestyles and the different T3SS origins (LEE encoded or
pINV encoded, respectively) EPEC/EHEC and EIEC/Shigella
actually share a number of T3SS translocated proteins, e.g., EspG/
VirA, EspO/OspE, NleE/OspZ reflecting similar infection
strategies.

EPEC/EHEC. The EPEC and EHEC T3SS is encoded on a
pathogenicity island termed the locus of enterocyte effacement
(LEE), a region highly conserved between the attaching/effacing
(A/E) pathogens EPEC, EHEC, rabbit enteropathogenic E. coli
(REPEC) and murine pathogen Citrobacter rodentium.89 The LEE
encodes gene regulators, structural components of the T3SS,
chaperones, the bacterial surface protein intimin and a number of
translocated proteins.90

EHEC O157:H7 appears to have evolved from EPEC O55:
H791 and non-O157:H7 EHEC strains to have evolved by
parallel evolution.92 Defining characteristics of EHEC are the
presence of stx genes, leading to more serious disease pathology
and complications (HUS), and absence of BFP, leading to
different adherence mechanisms. EPEC and EHEC are primarily
human pathogens; although a range of ruminants carry EHEC it
is generally asymptomatic in these animals. This host restriction
makes modeling EPEC/EHEC infections difficult and so the
related A/E pathogens REPEC and C. rodentium are commonly
used as infection models.

Non T3SS virulence mechanisms. Adherence. EPEC/EHEC
encode several well-characterized fimbrial (pili) adhesins. Human
EPEC strains are divided into typical or atypical strains according
to the presence or absence of the EPEC adherence factor (EAF)
plasmid93 which encodes the BFP. BFP is responsible for the
formation of microcolonies through bacterial-bacterial interac-
tions and a binding pattern known as localized adherence.94,95

Long polar fimbria (LPF) play a significant role in EHEC
adherence to epithelial cells, although they are not present in all
strains.96

A variety of non-fimbrial adhesins have been identified for both
EPEC and EHEC (Table 1). EHEC factor for adherence (Efa-1),
found in some EHEC strains, contributes to in vitro adherence.97

The major outer membrane protein OmpA has been reported to
interact with cultured human intestinal cells in O157 EHEC
infections.98 Porcine attaching and effacing associated adhesin
(Paa), found in EHEC, EPEC and ETEC strains, contributes to
A/E lesions in pig ileal explants.99 Additionally, there is a growing
list of autotransporters involved in adherence in some EPEC/
EHEC strains including STEC autoagglutinating adhesin (Saa),100

E. coli immunoglobulin-binding protein (EibG)101 and EhaA.102

Intimate attachment of the bacteria to the host cell is T3SS-
dependent and is described in detail below (Intimate attachment
and A/E lesion).

Toxins. The major toxin produced by EHEC is the phage
encoded Stx of which there are two subgroups, Stx1 and Stx2 (and
variants thereof), with Stx2 more common among human isolates.
Antibiotic treatment of Stx-producing bacteria is not
recommended as it induces both expression of the toxin and
allows release and dissemination (Stx does not appear to be
actively transported from the cell).103 For a review of Stx activity
and intracellular trafficking see Johannes et al.104

Stx are AB5 toxins with the B subunit mediating binding to
the membrane glycolipid globotriaosylceramide (Gb3). The B
subunit induces endocytic plasma membrane invagination-
s105and vesicles traffic to early endosomes where, in toxin
sensitive cells, Stx leaves the endocytic pathway106 and travels
through the Golgi apparatus and ER by retrograde transport.
The catalytic A-subunit is translocated to the cytosol to reach its
molecular target, rRNA, where it cleaves an adenine residue
from the 28S rRNA of eukaryotic ribosomes, inhibiting protein
synthesis and eventually leading to cell death.107 In toxin
resistant cells (e.g., Monocytes, macrophages) Stx does not leave
the endocytic pathway but is degraded by lysosomes.108 In these
cells Stx activates the MAPK pathway and produces IL-6 and
TNFa, which can in turn increase Gb3 expression on
endothelial cells.

Once Stx is released into the gut lumen it is translocated across
the intestinal epithelium into the underlying tissues and
bloodstream and then targets host cells expressing Gb3. In
humans, high concentrations of Gb3 are found in renal tubular
cells and microvascular endothelial cells, particularly those in the
kidney, gut and brain, explaining the clinical manifestations of
HUS. Stx has also been shown to induce apoptosis in various cell
types which may contribute to disease pathology.109,110

Some EHEC and EPEC strains also produce SPATEs, the two
best characterized being EspP from EHEC and EspC from EPEC.
EspC shares 70% amino acid similarity with Pet (EAEC) and also
cleaves spectrin, although at a different site than Pet. Unlike Pet
which is internalized by receptor-mediated endocytosis EspC
internalization requires EPEC contact with the host cell and
production of a T3SS.111 Four subtypes of EspP have been
described with subtype a associated with highly pathogenic
strains.112 EspP has recently been described to cleave complement
factors C3/C3b and C5 and impair complement function in
vitro.113
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The T3SS and delivered effectors. The general T3SS is
comprised of a cytosolic ATPase, inner and outer membrane
rings, a periplasmic shaft and an extracellular needle protein
(reviewed in ref. 114). The EPEC and EHEC systems have an
additional filament of ~260 nm protruding from the T3SS needle
which is generated by polymerization of EspA subunits.115 This
filament functions in initial attachment to the host cell before
secretion of the translocators, EspB and EspD, which form the
translocation pore in the host cell membrane.116,117 EHEC and
EPEC use the T3SS to inject dozens of effector proteins into the
eukaryotic cell cytoplasm. Once translocated, these effector
proteins are targeted to different subcellular compartments and
affect diverse signaling pathways and physiological processes.
In addition to the seven effectors encoded in the LEE, there are
other effectors encoded within prophages and other integrative
elements.118 Although EPEC and EHEC show high levels of
conservation between the LEE encoded effectors, there is
significant diversity in their non-LEE effector (NLE) repertoire;
EPEC E2348/69 has been shown to have 21 intact effector genes
whereas the EHEC O157 strain Sakai is estimated to have closer
to 50 T3SS effectors.118,119 For a recent detailed review of EPEC/
EHEC effectors see Wong et al.120

Intimate attachment and A/E lesion. EPEC/EHEC coloniza-
tion results in the formation of A/E lesions on the apical surfaces
of enterocytes (Fig. 5A). These characteristic T3SS-dependent
lesions describe the effacement of microvilli and intimate bacterial
attachment with actin accumulation at the bacterial host cell
interface; in vitro the actin polymerization activity results in
formation of raised pedestal-like structures underneath the
attached bacteria.121 The outer membrane adhesin, intimin was
the first bacterial gene product found to be essential for the
intimate attachment of bacteria to epithelial cells.122 The intimin
encoding eae gene was later found on the LEE and its product was
shown to be secreted via the general secretory pathway and
inserted into the bacterial outer membrane.123,124 Four distinct
intimin types were originally reported (a, β, c and d),125 although
more than 20 types are now recognized.126 Intimin shares
homology (31% identity) with invasin from Yersinia pseudotu-
berculosis and further studies on the intimin/invasin family have
shown that the C-terminal 280 amino acids (Int280/Inv280) are
required for binding β1-chain integrins.127,128 The transmembrane
intimin receptor (Tir) is a LEE-encoded effector translocated via
the T3SS,129 which resides in the host cell plasma membrane and
interacts with intimin to allow intimate attachment of the bacteria
with the host cell. EPEC/EHEC therefore delivers its own adhesin
into the host to ensure intimate attachment is achieved. Intimin
can also interact with the host protein nucleolin, which is
upregulated by Stx.130

In addition to the role of Tir as a receptor for intimin, it is
also an important mediator of protein signaling within epithelial
cells. In EPEC, Tir is phosphorylated at tyrosine 474 (Y474p) to
promote its interaction with the adaptor protein Nck leading to
the recruitment of neural Wiskott-Aldrich syndrome protein (N-
WASP).131,132 This initiates actin polymerization mediated by
the actin-related protein 2/3 (Arp 2/3) complex.131,133 However,
EHEC Tir lacks a tyrosine 474 equivalent and the process of

actin polymerization is mediated via the T3SS translocated
effector protein, TccP (Tir-cytoskeleton coupling protein)134 also
known as EspFU (E. coli secreted protein F in prophage U).135

TccP/EspFU interacts with the IRSp53/MIM proteins, IRTKS
and IRSp53, which also bind Tir at an Asn-Pro-Tyr (NPY458)
tripeptide in the Tir C-terminal domain thereby linking
TccP/EspFU indirectly to Tir.136-138 TccP/EspFU interacts with
and activates N-WASP preventing its autoinhibition fold and
thus, initiating an Nck-independent actin polymerization
pathway.139 The NPY motif is conserved in EPEC Tir
(NPY454) but in EPEC belonging to lineage 1 this pathway
accounts only for low levels of pedestal formation in the absence
of TccP/EspFU.138 Previous studies have demonstrated the
conservation of the Nck and TccP/EspFU pathways in EPEC
lineage 1 and EHEC O157 respectively.140 Interestingly, both
pathways are utilized simultaneously in vitro for most non-O157
EHEC strains, EPEC O119:H6141 and EPEC lineage 2
strains.140 Unexpectedly neither pathway appears to be necessary
for A/E lesion formation in vivo in C. rodentium infections, in
EPEC and EHEC infection of human intestinal in vitro organ
cultures (IVOC),142,143 or for EHEC colonization in the infant
rabbits and gnotobiotic piglets models,144 indicating the
molecular mechanisms of A/E formation and their functions
are far from understood.

Actin remodeling. Several EPEC T3SS effectors disrupt Rho
GTPase signaling and hence subvert actin dynamics (Fig. 5B).145

The Rho family small G proteins are crucial in the regulation of
key cellular functions and the best characterized are Cdc42, Rac1
and RhoA, which trigger filopodia, lamellipodia/ruffles and stress
fibers respectively.146 T3SS effectors have been shown to regulate
Rho GTPases by functioning as guanine exchange factors (GEFs),
which control the switch from GDP-bound (inactive) to the
GTP-bound (active) state,147 or GTPase-activating proteins
(GAPs), which increase the hydrolysis of GTP leading to the
inactive state of the Rho GTPases.148

Alto et al. grouped 24 bacterial effector proteins in the WxxxE
family based on a conserved motif of two invariant amino acids,
Trp and Glu separated by three variable amino acids.149 Members
of the family include Map, EspM, EspT from EPEC/EHEC,
IpgB1 and IpgB2 from Shigella spp, SopE and SifA from
Salmonella spp Map and EspM function as GEFs on Cdc42 and
RhoA respectively, leading to filopodia150 and stress fibers
formation.151 In the case of EspT, Rac1 and Cdc42 are both
activated which results in the formation of membrane ruffles and
lamellipodia and bacterial internalization.152 Map and SopE have
been shown to have similar crystal structures when resolved in
complex with Cdc42.147 Despite the lack of sequence or structural
similarity bacterial WxxxE effectors and eukaryotic GEFs appear
to form the same conformational complex with Cdc42. The T3SS
effector EspH was shown to subvert actin dynamics affecting
filopodia and pedestal formation.153 EspH inactivates mammalian
Dbl-homology and pleckstrin-homology (DH-PH) Rho GEFs,154

but not the bacterial Rho GEFs. This suggests that EspH might
clear the cell of endogenous Rho GEFs allowing the bacterial Rho
GEFs (WxxxE effectors) to take over cell signaling to fulfill the
bacterial infection strategy.
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Figure 5. Enteropathogenic E. coli and Enterohamerrhagic E. coli (EPEC and EHEC). EPEC/EHEC inject an array of T3SS effector proteins to mediate
intimate attachment and subvert host cell processes. In addition EHEC produces Stx, the action of which is described in Figure 3B. (A) Intimate
adherence. The translocated intimin receptor (Tir) binds intimin on the bacterial surface to initiate intimate attachment, actin accumulation and pedestal
formation. TirEPEC is phosphorylated at Y474 resulting in Nck and N-WASP recruitment. TirEHEC signaling proceeds independently of Nck via the T3SS
effector TccP/EspFU that interacts with IRTKS/IRSp53 and N-WASP. Both pathways lead to Arp2/3 mediated initiation of actin polymerization. (B) Actin
remodeling. Map, EspM and EspT activate Rho GTPases leading to filopodia, stress fibers and ruffles/lamellipodia respectively. Additionally, EspT can
induce internalization of EPEC. EspH disrupts Rho GTPase signaling by targeting host DH-PH GEFs. (C) Disruption of gut integrity. Tir, Map, EspF and EspB
contribute to effacement of the normal absorptive microvilli. Map, EspF and EspI disrupt tight junction (TJ) integrity and epithelial barrier function. EspG
disrupts microtubules while EspI and EspG both modulate protein trafficking and affect TJs and the DRA Cl2/OH2 exchanger respectively. EspG and EspF
alter aquaporin levels disrupting water and ion absorption. EspF reduces the activity of the NHE3 Na+/H+ exchanger and multiple effectors target the
SGLT1 Na+/glucose co-transporter. (D) Manipulating immune responses. NleB, NleC, NleD NleE and NleH inhibit inflammatory responses through
targeting NFkB, JNK and p38 pathways. NleB and NleE inhibit IkB degradation and subsequent nuclear translocation of NFkB. NleH can also block
NFkB nuclear translocation. NleC and NleD function as metalloproteases acting on NFkB and JNK/p38 respectively blocking transcription of pro-
inflammatory genes initiated by NFkB and AP-1 transcription factors. EspT promotes expression of inflammatory genes through Erk, JNK and NFkB
pathways. (E) Balancing apoptosis and survival. Pro-apoptotic EspF causes mitochondrial dysfunction leading to activation of apoptotic pathways while
Cif causes cell cycle disruption. Anti-apoptotic NleH interacts with BI-1 at the ER and NleD inhibition of AP-1 dependent gene expression (shown in C)
reduces pro-apoptotic gene expression. EspO and EspZ promote integrin mediated cell adhesion and survival through interacting with ILK and CD98
respectively. (F) Inhibiting phagocytosis. EspF, EspB, EspH and EspJ inhibit phagocytosis by macrophages through disruption of PI3K signaling,
myosin-actin interactions, Rho GTPase signaling and an unknown mechanism respectively.
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Another T3SS effector, EspV present in EPEC strains E110019
and E22 is able to cause nuclear condensation, cell rounding and
actin-rich dendrite-like projections upon overexpression in
mammalian cells155 although the mechanisms involved in this
actin rearrangement are not yet known.

Disrupting gut integrity. EPEC induces diarrhea through a
variety of mechanisms (Fig. 5C). First, the effacement of the
microvilli, a defining feature of the A/E lesion, results in a reduced
surface area for normal absorptive processes. EspB, Map, EspF,
Tir and intimin have all been shown to be involved in microvillus
effacement.156,157 EPEC also inhibits ion and water exchange
through more targeted mechanisms. For example, Cl- absorption
is reduced by targeting the DRA Cl-/OH- exchanger through
reducing the exchanger cell surface levels in an EspG and EspG2
dependent manner.158 While EspG was originally described to
degrade microtubules it can also bind the Golgi matrix protein
GM130, p21-activated kinases (PAKs) and ADP-ribosylation
factors (ARFs)159,160 acting as a molecular scaffold to regulate host
signaling cascades, leading to decreased protein secretion and
receptor trafficking. Consequences of this manipulation of protein
trafficking within the host cell include altering the paracellular
permeability and membrane channel expression in entero-
cytes.161,162

In addition, the effector EspF is responsible for reducing the
activity of Na+/H+ exchanger 3163 and EPEC infection leads to a
significant reduction in the activity of the SGLT1 Na+/glucose
cotransporter.156 EspF and EspG have both been implicated in
affecting water transport by altering aquaporin levels on apical and
lateral membranes.164 EPEC infections also affect the integrity of
the epithelial monolayer and so disrupt barrier function. EspF,
Map and intimin have all been shown to contribute to diarrhea
through the disruption of tight junction integrity.165 EspI (NleA)
also disrupts intestinal tight junctions166 and like EspG is able to
decrease protein transport. EspI does so by binding to SEC24
through a PDZ binding motif and inhibiting COPII vesicle
fusion167,168 indicating EPEC/EHEC have developed multiple
mechanisms to modulate the intestinal barrier function and
integrity during infection.

Manipulating the immune response. Manipulation of the host
immune system is a common theme in bacterial infections and
a requirement for successful colonization and dissemination.
EPEC and EHEC infections lead to an inflammatory response
predominantly initiated by recognition of the bacterial flagella169.
The production of pro-inflammatory cytokines is subsequently
dampened by the bacteria with increased bacterial loads leading to
reduced IL-8 production170 with several effector proteins acting in
concert to illicit this effect (Fig. 5D). The transcription factor
NFkB is central to the initiation of inflammatory responses;
NFkB dimers are held inactive in the cytoplasm by IkB until IkB
is phosphorylated and degraded allowing NFkB to translocate to
the nucleus and initiate transcription. The effector proteins NleB
and NleE inhibit IkB degradation and therefore the nuclear
translocation of NFkB subunits.171,172 Additionally, the effectors
NleC and NleD have been shown to function as metalloproteases
downregulating inflammatory responses by targeting NFkB
(NleC) and the mitogen activated protein kinases c-Jun

N-terminal Kinase (JNK) and p38 (NleD).173,174 NleH effectors
have an uncertain role in immune modulation as they have been
shown to enhance inflammatory responses175 and conversely
attenuate NFkB activation176 with NleH1 able to block nuclear
translocation of the RPS3 subunit of NFkB while NleH2 can
induce expression of RPS3 dependent genes.177,178 Interestingly
the WxxxE effector EspT, triggers the expression of pro-
inflammatory genes through Erk, JNK and NFkB pathways179

suggesting a careful balance between pro- and anti-inflammatory
actions exists.

Balancing apoptosis and maintaining cell survival. Like many
enteric pathogens EPEC and EHEC are able to induce apoptosis
upon infection.180,181 However, apoptosis induction needs to be
modulated in order to maintain an infective niche within a host,
by balancing pro and anti-apoptotic effectors (Fig. 5E). In EPEC
and EHEC, two T3SS effectors are currently known to act as
inducers of apoptosis, EspF182 and Cycle inhibitory factor (Cif).183

EspF is targeted to the mitochondria via an N-terminal
mitochondrion-targeting sequence and interferes with the mito-
chondrial membrane potential.184 EspF has specifically been
shown to induce the release of cytochrome c and cleavage of
caspases 9 and 3182 while Cif acts mainly as a bacterial
cyclomodulin subverting the eukaryotic cell cycle by blocking
both the G1/S and G2/M transitions resulting in apoptosis.182 The
action of these pro-apoptotic effectors is balanced by the
translocation of anti-apoptotic effectors such as NleH and
NleD. NleH inhibits intrinsic apoptotic pathways via its direct
interaction with the anti-apoptotic protein Bax inhibitor-1 (BI-
1)185 while NleD inactivates JNK leading to the suppression of the
downstream transcription factor AP-1 which activates several pro-
apoptotic proteins.186

Additionally, other T3SS effectors indirectly contribute to the
inhibition of apoptosis through their ability to promote host cell
survival mechanisms. The LEE encoded effector EspZ interacts
with CD98, a host protein involved in integrin mediated cell
adhesion and cell survival187 while the non-LEE encoded effector
EspO increases cell adhesion and survival through its direct
binding with integrin-linked kinase (ILK).188 EPEC and EHEC
also activate several other signaling pathways known to inhibit
apoptosis including the protein kinase C, tyrosine kinases and
phosphatidylinositol 3-kinase189-191 suggesting other effectors
might also be involved in manipulation of apoptosis.

Inhibiting phagocytosis. During infection EPEC and EHEC
primarily survive extracellularly and have developed mechanisms
to inhibit internalization by phagocytic cells (Fig. 5F). Phago-
cytosis involves rearrangement of the actin cytoskeleton and
additional membrane recruitment and is initiated by the
engagement of surface receptors, which recognize a variety of
ligands including pathogen-associated lipids and sugars as well as
immunoglobulin (Ig) and components of the complement
cascade. EPEC and EHEC inhibit internalization of unopsonized
(cis-phagocytosis) and opsonized bacteria (trans-phagocytosis)
through the actions of a number of effector proteins. EspF targets
PI3K signaling, inhibiting its activation rather than recruitment to
the site of attachment, preventing cis-phagocytosis and inter-
nalization of IgG opsonized particles.192 EspB has been shown to
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bind several members of the myosin superfamily preventing the
interaction of Myosin -1c and actin, inhibiting cis-phagocyt-
osis.193 Recently the effector EspH, which inactivates Rho GTPase
signaling, was also shown to inhibit both cis-phagocytosis and
trans-phagocytosis,154 while, EspJ has been shown to inhibit trans-
phagocytosis through an unknown mechanism. EspJ is capable of
preventing phagocytosis of both IgG and complement opsonized
particles despite significant differences between these FccR and
CR3 mediated phagocytic pathways.194

The T3SS is obviously of fundamental importance to EPEC
and EHEC infection. Some effectors appear redundant and others
to have multiple functions. The challenge is now to move away
from studying effector proteins in isolation and to apply more
holistic approaches to study the function of individual effectors in
the context of the whole effector repertoire and to determine the
significance of the many different effector phenotypes in vivo with
respect to the temporal-spatial kinetics of infection.

Conclusions

E. coli are a remarkably versatile and diverse genus of bacteria,
which includes both commensals and pathogens. Despite more
than 100 years of research we still do not understand all of

the pathogenic mechanisms utilized by the different E. coli
pathotypes. Making research on E. coli more challenging is the
fact that the species is constantly evolving, as is evident by the
recent emergence of a new pathotype (STEAEC). Emergence of
novel pathotypes is likely due to selective pressure, changes to
human behavior and demographics and to the environment,
allowing these strains to present within the human population (e.g.,
changes in food growing, harvesting and consumption). The rapid
growth and easy acquisition of new traits by these pathotypes means
researchers and clinicians are forced to play ‘catch-up’ in treatments
and preventative methods. However better understanding of the
emergence and changes in pathotypes may help us to predict and
potentially prevent the next round of adaptations. The role of E. coli
and other bacteria in complex disease processes such as Crohn
disease is only beginning to be studied and requires much further
research to unravel the contributions and interplay between the
host, microbiota and pathogen.
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